

YEAR 12 MATHEMATICS METHODS

Test 2, 2023 Section One: Calculator Free Applications of Anti-derivative, FTOC & DRVs

STUDENT'S NAME:

DATE: Monday 8th May

TIME: 25 minutes

MARKS: 28 **ASSESSMENT %**: 10

(6 marks)

(2 marks)

INSTRUCTIONS:

Standard Items: Pens, pencils, drawing templates, eraser Special Items:

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

Question 1

Determine

(a) $\int (8x-6)e^{2x^2-3x+1}dx$ (2 marks)

(b) $\int \left(\sin\frac{3x}{2} - 2x\cos\frac{2\pi}{5}\right) dx$

(c) $\frac{d}{dx}\int_{x}^{1}\frac{2}{3t^{3}-1}dt$ (2 marks)

CALCULATOR FREE

2023

Question 2

(6 marks)

Determine, with reasoning, whether each of the following represent a discrete random variable.

(a)						
x	0	1.5	2	3	4	
P(X=x)	0.3	0.1	0.4	0.05	0.15	
	-			•	(2)	

(2 marks)

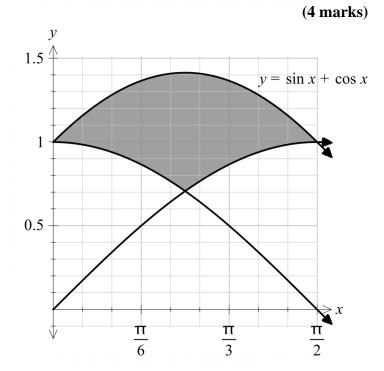
(b)

x	-2	-1	1	3	5	
$P(X \le x)$	0	0	0.2	0.6	1	
					(2	marks)

(c)
$$P(X = x) = \left(\frac{1}{2}\right)^x$$
; $x = 1, 2, 3, 4...$

(2 marks)

(5 marks)


(a) Determine
$$\frac{d}{dx}(2x\sin(3x))$$

(b) Using your answer from (a) or otherwise, determine $\int 6x \cos(3x) dx$ (3 marks)

The graph on the right shows three functions:

 $f(x) = \sin x$ $g(x) = \cos x$ $h(x) = \sin x + \cos x$

Determine the exact value of the shaded area.

CALCULATOR FREE

Question 5

(7 marks)

(a) Each of the following represent discrete probability functions. Determine the value of k for each.

(i)
$$P(x) = \frac{1}{k}; x = 1, 2, 3, ... 12$$
 (1 mark)

(ii)

x	1	2	3	5	7
P(X=x)	2k	k	k	5k	6k
					(2 marks)

(b) The random variable X has probability distribution function p(x) defined by $p(x) = \frac{x+2}{k}$ for x = -1, 0, 1 and 2.

- (i) Determine the value of k.
- (ii) Calculate $P(X = 0 | X \neq 1)$. (2 marks)

END OF QUESTIONS

(2 marks)

YEAR 12 MATHEMATICS METHODS

STUDENT'S NAME:

DATE: Monday 8th March

INSTRUCTIONS:

Standard Items: Pens, pencils, drawing templates, eraser 1 A4 page notes, Classpad, Scientific Calculator Special Items:

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

Question 6

Harry fires an arrow at a target *n* times. The probability, *p*, of Harry hitting the target is constant and all shots are independent.

Let *X* be the number of times Harry hits the target in the *n* attempts.

The mean of *X* is 32 and the standard deviation is 4.

State the distribution of *X*. (a)

Determine *n* and *p*. (b)

TIME: 25 minutes

MARKS: 31 ASSESSMENT %: 10

Test 2, 2023 Section Two: Calculator Allowed Applications of Anti-derivative, FTOC & DRVs

(4 marks)

(3 marks)

(1 mark)

(4 marks)

The area bound by the curve $y = e^{x+1} + 2e$ and the x-axis between the values x = 0 and x = k is equal to $e^3 - e^2$ square units.

Determine the value of k given k > 1.

(7 marks)

(4 marks)

At time t = 0, a small body *P* is at the origin *O* and is moving with a velocity of 18 ms⁻¹. The acceleration of *P* for $t \ge 0$ is given by $a = \frac{-3}{\sqrt{t+4}} ms^{-2}$.

(a) Determine the velocity of P when t = 5.

(b) Determine the distance of P from O at the instant P is stationary. (3 marks)

CALCULATOR ALLOWED

12 METHODS TEST 2

(9 marks)

Question 8

Studies in Britain have recorded that 1 in 100 eight-year-old children need at least one tooth removed caused by sugary drinks and severe tooth decay.

A typical primary school class of 24 eight-year-olds are investigated for the need to remove at least one tooth.

Determine the probability of:

- (a) 2 students needing at least one tooth removed. (1 mark)
- (b) No students requiring the removal of any teeth. (1 mark)
- (c) At least one student requiring the removal of at least one tooth. (2 marks)
- (d) Less than 4 students requiring the removal of at least one tooth given that at least one student required tooth removal. (2 marks)

Of the thirteen-year-olds in Britain requiring tooth removal, the probability of them requiring just one tooth out of their 32 permanent teeth removed is 5%.

(e) Calculate the probability of a permanent tooth in a thirteen-year-old needing removal.

(3 marks)

CALCULATOR ALLOWED

Question 9

END OF QUESTIONS

The discrete random variable <i>X</i> has the following probability distribution	:
--	---

x	1	2	3	4	5
P(X=x)	0.1	а	0.3	0.25	b

Determine the values of *a* and *b* if the expected value, E(X) = 3.3(a)

Determine the variance, Var(x). (b)

State the value of E(X + 5)(c)

State the value of Var(5 - 2X)(d)

(3 marks)

(2 marks)

(1 mark)

(1 mark)

(7 marks)